Тонкопленочные платиновые ЧЭ фирмы Heraeus Sensor Technology

Исторические данные

Основатель предприятия Wilhelm Carl Heraeus (1827 – 1904)

1851 – 1896 – выплавлен «Первый немецкий платиновый сплав»

1906 - изготовлен и запатентован первый платиновый термометр сопротивления (Richard Küch)

1952 - изготовлен платиновый ЧЭ в керамической изоляции

1974 - изготовлен платиновый тонкопленочный ЧЭ

1994 - изготовлен платиновый термометр сопротивления для 1.000 °C

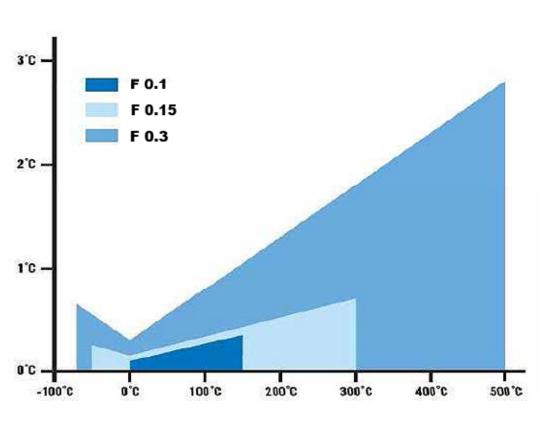
2002 - изготовлен платиновый тонкопленочный ЧЭ Pt 10.000 серии SMD

Структура концерна HERAEUS

Различие между тонкопленочными и проволочными ЧЭ ТС

- У тонкопленочных ЧЭ сопротивлением является тонкий фотолитографически структурированный платиновый слой на керамической подложке
- У проволочных ЧЭ сопротивлением является платиновый провод в керамический трубке
- Стоимость используемого платинового провода существенно выше, чем у тонкопленочных ЧЭ (проблема стоимости)
- Проволочные ЧЭ могут нагружаться более высоким током, чем тонкопленочные ЧЭ
- Проволочные ЧЭ доступны преимущественно Рt 100 или менее, а тонкопленочные ЧЭ - Pt 10 000

Эволюционное развитие тонкоплёночного платинового меандра:


- формирование меандра с помощью лазера (а)
- методом фотолитографии на керамике (б)

- на новейших подложках (в) Evolution in Pi-Thin-Film Technology Fotolithografic meandration on a new substrate Fotolithografic meandration Lasermeandration on ceramic on ceramic a) б)

Преимущества тонкопленочных платиновых ЧЭ

- сравнительно низкая стоимость;
- высокая долговременная стабильность;
- большая амплитуда сигнала и легкая его обработка;
- короткое время термической реакции;
- высокая точность;
- незначительное отклонение от номинальных значений (дрейф);
- практически линейная характеристика;
- нормированная характеристика (взаимозаменяемость ЧЭ);
- высокая стойкость к циклическому изменению температуры;
- отсутствие полярности;
- широкий температурный диапазон: от -196°C до 1.000°C.

Классы допуска платиновых тонкопленочных ЧЭ, установленные DIN EN 60751

Диапазон измерений:

F 0.1 0 °C до +150 °C (-50 °C до +250 °C) F 0.15 -30 °C до +300 °C (-50 °C до +450 °C) F 0.3 -50 °C до +500 °C (-50 °C до +600 °C) F 0.6 -50 °C до +600 °C (-50 °C до +600 °C)

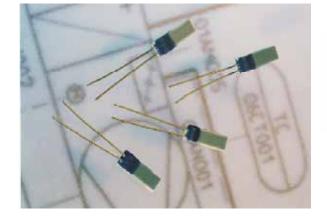
Классы допуска:

F 0.1 $\triangle t = \pm (0,1 \, {}^{\circ}\text{C} + 0,0017 \, / t /)$ F 0.15 $\triangle t = \pm (0,15 \, {}^{\circ}\text{C} + 0,002 \, / t /)$ F 0.3 $\triangle t = \pm (0,3 \, {}^{\circ}\text{C} + 0,005 \, / t /)$ F 0.6 $\triangle t = \pm (0,6 \, {}^{\circ}\text{C} + 0,011 \, / t /)$

Классификация ЧЭ для термометров сопротивления (HST)

- ЧЭ ТС с контактными проводами
- Сенсорные компоненты
- Сенсоры специальной конструкции
- Сенсорные модули

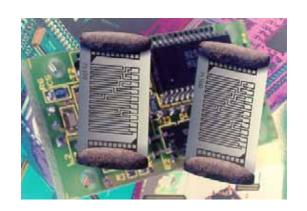
ЧЭ термометров сопротивления с контактными проводами


С – для криогенных т-р (-196°С до +500°С) – *(AuPd, AgPd - 0,25 мм)* (С 220, С 420, С 416)

L – для низких т-р (-50°C до +400°C) - (AgPd - 0,25 мм) (L 220, L 220 P, L 416, L 420, L 1020)

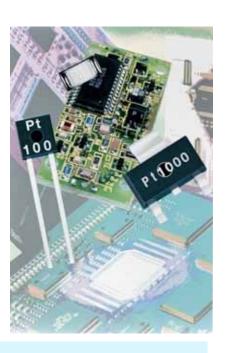
MN – для средних т-р (-70°С до +600°С) - (*Ni-Pt* – 0,15; 0,20 мм, *Ni* - 0,20 мм) (M 213, M 220, M 222, M 310, M 410 ax, M 416, M 422, M 622, M 622 Pt 10.000, M 1020, MN 222, MN420, MH 220, MH 416, MH 420, MH 1020)

H, HD, HL – для высоких т-р (-70°С до +1000°С) - (*AuPd, Pt, PtNiCr - 0,25 мм*) (HD 421, HL 220)



M 1020

Сенсорные компоненты


(SMD 0603, SMD 0805 10 KOM, SMD 0805, SMD 1206, SOT 223, TO 92)



SMD 0603

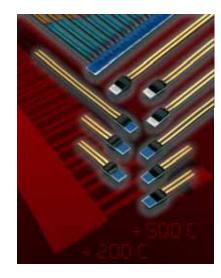
TO 92

SMD 0805 10 KOM

SOT 223

Датчики температуры специальной конструкции L 624 DBC, LG, PCB 540, PCB 0805, PCB 1206, MR 518 G, MR 828/845



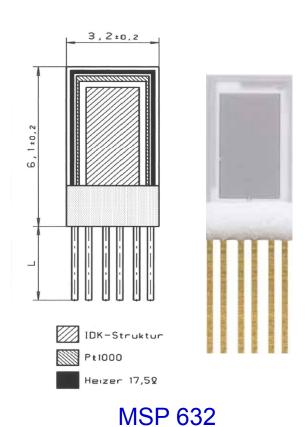


Сенсор измерения температуры масла в двигателе

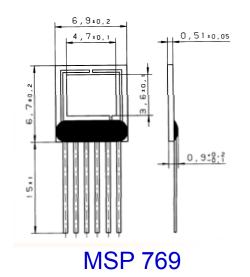
MR 828/845

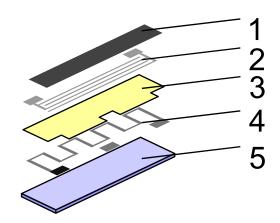
MR 518 G

PCB 0805


L 624 DBC


Сенсорные модули


MSP 332, MSP 632, MSP 769 Нагреватель Pt 6,8 M 1020


Применение:

изготовление датчиков для различных газов и газообразных углеводородов;
 изготовление датчиков для определения влажности чистоты воздуха и др.

- 1 активный слой датчика
- 2 интердигитальная структура (платина или золото)
- 3 слой изоляции
- 4 платиновая структура с нагревателем и датчиком температуры
- 5 подложка из Al_2O_3

Платиновые проволочные ЧЭ

Датчики температуры в керамическом корпусе серии KN

Температурный диапазон: **от -196** °**С до + 660** °**С** Присоединительные провода: сплав палладий-золото

Платиновые ЧЭ в керамическом корпусе серии К

Температурный диапазон: **от -196** °**C до + 850** °**C** Присоединительные провода: сплав платина-золото

Платиновые ЧЭ в керамическом корпусе серии КН

Температурный диапазон: от -196 °C до + 1000 °C Присоединительные провода: платина

Платиновые ЧЭ в стеклянном корпусе серий GO, GA, GX

Температурный диапазон: от -196 °C до + 400 °C Поставляются по специальному запросу

- ➢ Ro до 500 Ом
- > Tк 3850, 3902, 3916, 3920 ppm

Терспективные направления применения тонкопленочных платиновых ЧЭ

<u>Сенсоры с малыми размерами</u> :

M 310 (3,0 mm x 1,0 mm) M 213 (1,7 mm x 1,25 mm) M 410ax (3,9 mm x 0,9 mm)

Время термической реакции (М 213)					
Вода: v=0,4м/с		Воздух: v=2м/с			
t _{0,5}	t _{0,9}	t _{0,5}	t _{0,9}		
0,04	0,12	2,2	7,0		

Сенсоры для высоких температур:

HL 220 Pt 1000 - 750 °C HD 421 Pt 100 - 850 °C HA 420 Pt 200 - 1000 °C

Высокоомные сенсоры:

1.000 Ом - типы: C, L, M, H, SMD, TO 92, LG, MR, PCB

2.000 OM - M 622

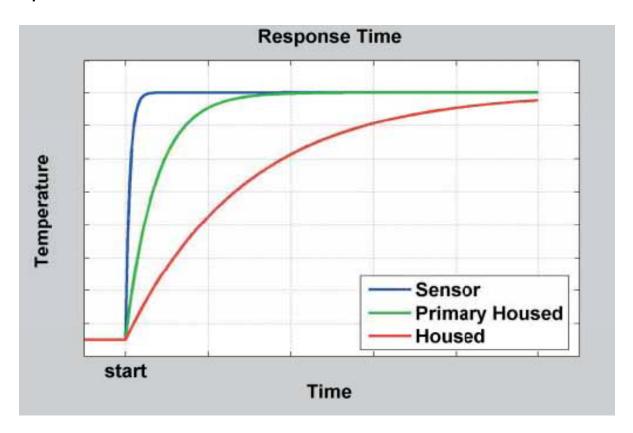
10.000 OM - *M* 622, *SMD* 0805

Различие между Pt 100 и Pt 1000

- Номинальное значение сопротивления для Рt 1.000 в 10 раз выше чем у Рt 100
- Первое преимущество состоит в том, что Вы можете использовать слабый электрический ток (в качестве источника энергии можно использовать, например, батарейку)
- Второе преимущество состоит в том, что Вы не должны заботиться об удельном сопротивлении кабеля или проводов, которыми Вы хотите подсоединить ТС
- Третье преимущество состоит в том, что у Вас есть более высокий выходной сигнал, например между 0°С и 100°С это -385 Ом вместо 38,5 Ом для Pt 100

Ошибка измерений от самонагрева

- Ошибка показаний от самонагрева ЧЭ происходит тогда, когда пользователь нагружает его более высоким током, чем рекомендуемый
- Если номинальное сопротивление ЧЭ выше, например: для Рt 1.000, по сравнению с Рt 100, (с тем же самым током) ошибка самонагрева выше
- Меньшее размеры, например: М 222 по сравнению с М 1020 (с тем же током и номинальным сопротивлением) ошибка самонагрева выше


Рекомендуемый измерительный ток:

100 Ом	мах. 1 мА
500 Ом	мах. 0,7 мА
1.000 Ом	мах. 0,3 мА
2.000 Ом	мах. 0,25 мА
10.000 Ом	мах. 0,1 мА

Время термической реакции

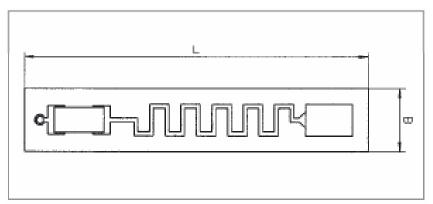
Время термической реакции ЧЭ, зависит от способа заключения его в корпус.
 Большинство материалов, в который помещается ЧЭ, снижают время термической реакции.

Области применения тонкопленочных ЧЭ (HST)

Автомобильная промышленность Производство бытовой техники

Отопление, вентиляция, кондиционирование Управление технологическими процессами Приборы для научных исследований и высокотехнологичес ких производств в области естествознания

Электроника



Сенсор серии РСВ (SMD 0805 FC) на элементе печатной платы для тепловых измерений

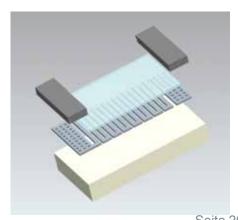
Номинальное сопротивление	Размеры		Тип –FC	Номер для заказа
R ₀	L [mm]	B [mm]		
100	22	2.5	0805	30 201 075
100	22	4.0	0805	30 201 071
500	22	2.5	0805	30 201 073
500	22	4.0	0805	30 201 069
1000	22	2.5	0805	30 201 063
1000	22	4.0	0805	30 201 067

SMD / SMD-FC

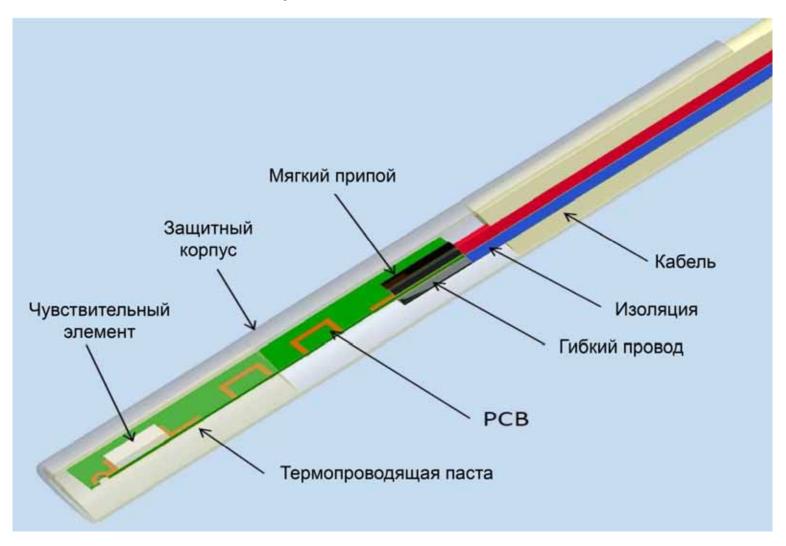
SMD или SMD FC являются элементами для пайки мягкими припоями на монтажной плате

Температурный диапазон SMD-50°C до 150°C

Температурный диапазон SMD FC


-50°C до 150°C (зависит от технологии соединения и проекта) температурный диапазон возможен до 250°C

Классы допуска


класс F 0.3 или F 0.6 (класс F 0.15 в подготовке)

Размеры

SMD 1206, SMD 0805, SMD 0603 SMD FC 1206, SMD FC 0805

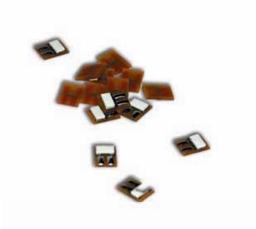
Строение РСВ

PCB

Основное применение

• калориметрия, измерение температуры жидкостей

Температурный диапазон

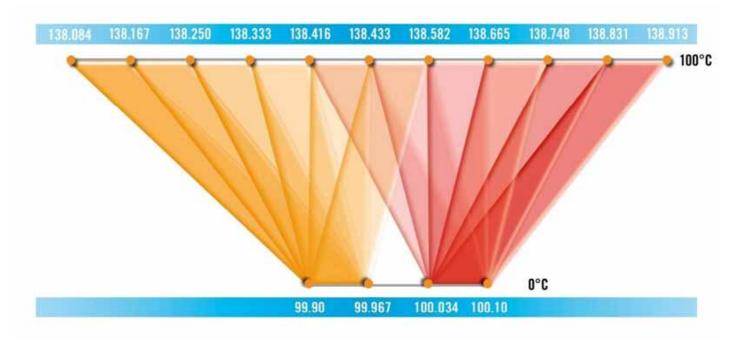

■ 0°C (-40°C) до 150°C

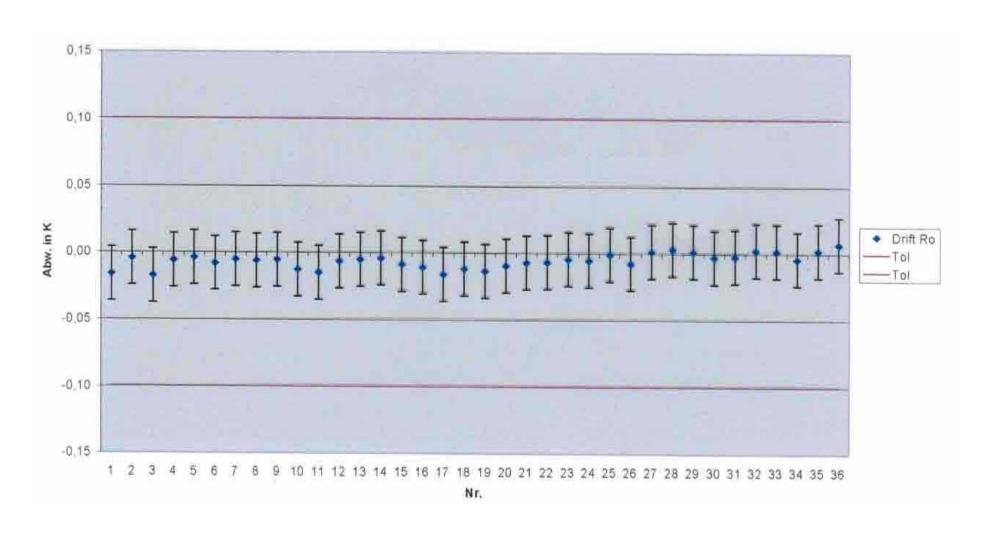
_ Стандартный выбор

Класс допуска F 0.3

Выбор группы

- 0,2 K между 0°C и 100°C / 18 групп
- 0,1 K между 0°C и 100°C / 45 групп




Классы допуска и диапазоны

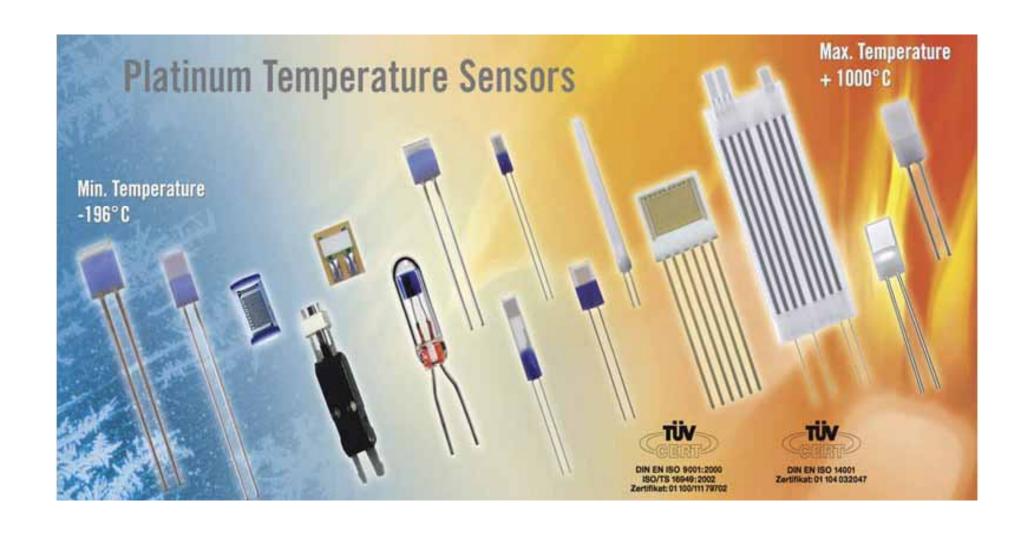
Выбор группы

• 0,2 Кельвина между 0°C и 100°C / 18 групп

Изменение R $_0$ после испытаний при температурах 0 °C / 150 °C за 1000 циклов (РСВ 0805)

Преимущества РСВ

- Возможен автоматический монтаж в термометр сопротивления
- Быстрое соединение между площадкой для пайки на монтажной плате и кабелем
- Не требуется изоляция в месте соединения (кабель к РСВ)
- Не требуется изоляция ЧЭ SMD FC на монтажной плате
- Ширина монтажной платы подбирается по внутреннему диаметру защитной гильзы
- Малое время термической реакции (SMD FC малого размера на конце монтажной платы в термопроводящей пасте)
- Минимальная глубина погружения, при которой обеспечивается стабильность показаний (до 15 мм)
- Обеспечивается температурный разрыв (уменьшается теплоотдача к кабелю)


Основные аргументы, чтобы покупать ЧЭ у HST

- Все ЧЭ производятся согласно спецификации RoHS
- HST имеет хорошо работающую систему качества и сертифицирован:

DIN EN ISO 9001 : 2000 производственный автомобильный экологический

- Высоко автоматизированное производство в Германии
- Самые современные технологические процессы изготовления, контроля и упаковки для всего Pt- производства
- HST разрабатывает и изготавливает платиновые ЧЭ ТС уже более 100 лет
- HST разработала первый платиновый тонкопленочный ЧЭ в 1974 и имеет более чем 30-летний опыт в области тонкопленочной технологии
- HST осуществляет хорошую техническую поддержку и является превосходным партнером в проектном бизнесе
- НST инновационная компания с продуктами для будущего
- HST разработала первый высокотемпературный ЧЭ (1000 °C)
 HST имеет 100 %-ую долю на этом сегменте рынка

Спасибо за Ваше внимание!

